Exponential stability for nonlinear ltering

نویسنده

  • Rami Atar
چکیده

We study the a.s. exponential stability of the optimal lter w.r.t. its initial conditions. A bound is provided on the exponential rate (equivalently, on the memory length of the lter) for a general setting both in discrete and in continuous time, in terms of Birkhoo's contraction coeecient. Criteria for exponential stability and explicit bounds on the rate are given in the speciic cases of a diiusion process on a compact manifold, and discrete time Markov chains on both continuous and discrete-countable state spaces. R esum e Nous etudions la stabilit e du ltre optimal par raport a ses conditions initiales. Le taux de d ecroissance exponentielle est calcul e dans un cadre g en eral, pour temps discret et temps continu, en terme du coeecient de contraction de Birkhoo. Des crit eres de stabilit e exponentielle et des bornes explicites sur le taux sont calcul ees pour les cas particuliers d'une diiusion sur une vari ete compacte, ainsi que pour des chaines de Markov sur un espace discret ou continu.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of Direct Exponential Observers for Fault Detection of Nonlinear MEMS Tunable Capacitor

In this paper a novel method is proposed for construction of an exponential observer for nonlinear system. The presented method is based on direct solution of dynamic error without any linearzing of nonlinear terms. Necessary and sufficient conditions for construction of direct observer are presented. Stability of the observer is checked using Lyapunov theorem. Also the ability of this observer...

متن کامل

Construction of strict Lyapunov function for nonlinear parameterised perturbed systems

In this paper, global uniform exponential stability of perturbed dynamical systems is studied by using Lyapunov techniques. The system presents a perturbation term which is bounded by an integrable function with the assumption that the nominal system is globally uniformly exponentially stable. Some examples in dimensional two are given to illustrate the applicability of the main results.

متن کامل

Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type

This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...

متن کامل

Global Asymptotic and Exponential Stability of Tri-Cell Networks with Different Time Delays

In this paper‎, ‎a bidirectional ring network with three cells and different time delays is presented‎. ‎To propose this model which is a good extension of three-unit neural networks‎, ‎coupled cell network theory and neural network theory are applied‎. ‎In this model‎, ‎every cell has self-connections without delay but different time delays are assumed in other connections‎. ‎A suitable Lyapun...

متن کامل

Asymptotic stability equals exponential stability, and ISS equals finite energy gain—if you twist your eyes

In this paper we show that uniformly global asymptotic stability for a family of ordinary differential equations is equivalent to uniformly global exponential stability under a suitable nonlinear change of variables. The same is shown for input-to-state stability and input-to-state exponential stability, and for input-to-state exponential stability and a nonlinear H∞ estimate.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996